Section 4.3: Logarithmic Functions

Video 1

The logarithm $\log _{a} x$ is the power that a must be raised to in order to equal x.

The number $a, a>0$ and $a \neq 1$, is called the base of the logarithm.
The positive number x is called the argument of the logarithm.

An equation is in logarithmic form if it is written in this form: $y=\log _{a} x$.

An equation is in exponential form if it is written in this form: $a^{y}=x$.
The two forms, $y=\log _{a} x$ and $a^{y}=x$, are equivalent equations.

1) Convert from one form to the other.

Logarithmic Form
a)
b) $\log _{2} 16=4$
c)

$$
10^{5}=100,000
$$

d) $\log _{5}\left(\frac{1}{125}\right)=-3$
e)

$$
7^{1}=7
$$

f) $\log _{9} 1=0$

Video 2

2) Solve the logarithmic equation. (Begin by rewriting the equation in exponential form.
a) $\log _{x}\left(\frac{25}{49}\right)=-2$
b) $\log _{32} x=\frac{4}{5}$
c) $\log _{81} \sqrt{3}=x$

Video 3

A logarithmic function is a function of the form $f(x)=\log _{a} x$, where $a>0$ and $a \neq 1$.
$3)$ Find the inverse function of $f(x)=3^{x}$.
4) Find the inverse function of $f(x)=\log _{a} x$.

So, exponential and logarithmic functions are inverses of each other.

Video 4

For $a>1$:
The graph of a logarithmic function $f(x)=\log _{a} x$ is increasing over its entire domain $(0, \infty)$.
The range of the function is $(-\infty, \infty)$.
It has a vertical asymptote on the y-axis $(x=0)$.
It passes through the points $\left(\frac{1}{a},-1\right),(1,0)$, and $(a, 1)$.
4) Graph $f(x)=\log _{3} x$.

Compare this graph and the process used to make it to the graph of the exponential function $f(x)=3^{x}$

For $0<a<1$, the graph of $f(x)=\log _{a} x$ is similar to that where $a>1$, except the function is decreasing over its entire domain.
5) Graph $f(x)=\log _{1 / 4} x$.

Video 4

To graph a function of the form $f(x)=\log _{a}(x-h)+k$, begin with the graph of the basic function $f(x)=\log _{a} x$, and apply a horizontal shift of h units and a vertical shift of k units.
6) Graph $f(x)=\log _{2}(x-5)+3$.

7) Graph $f(x)=\log _{1 / 3}(x+1)-2$.

Video 5

Properties of Logarithms:
$\log _{a} 1=0$
$\log _{a} a=1$

Product Property: $\log _{a}(x \cdot y)=\log _{a} x+\log _{a} y$

Quotient Property: $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$

Power Property: $\log _{a} x^{r}=r \cdot \log _{a} x$
$a^{\log _{a} x}=x$
$\log _{a} a^{x}=x$
8) Expand.
a) $\log _{a}\left(x^{3} y^{2} \sqrt{z}\right)$
b) $\log _{a}\left(\frac{x y^{3}}{z^{4} w^{5}}\right)$
c) $\log _{a} \sqrt[m]{\frac{r^{3}}{s^{4} t^{7}}}$
9) Condense.
a) $\log _{a} x-\log _{a} y+\log _{a} z$
b) $3 \log _{a} x+4 \log _{a} y-5 \log _{a} z-\frac{1}{2} \log _{a} z$
c) $2-\log _{a} x+9 \log _{a} y$
10) Given that $\log _{10} 7 \approx 0.845$, find the following.
a) $\log _{10} 343$
b) $\log _{10}\left(\frac{100}{7}\right)$

