Section 4.3: Logarithmic Functions

Video 1

The *logarithm* $\log_a x$ is the power that *a* must be raised to in order to equal *x*.

The number a, a > 0 and $a \neq 1$, is called the **base** of the logarithm.

The positive number *x* is called the *argument* of the logarithm.

An equation is in *logarithmic form* if it is written in this form: $y = \log_a x$.

An equation is in *exponential form* if it is written in this form: $a^{\nu} = x$.

The two forms, $y = \log_a x$ and $a^y = x$, are equivalent equations.

1) Convert from one form to the other.

Logarithmic Form	Exponential Form
a)	$3^2 = 9$

b) $\log_2 16 = 4$

c)
$$10^5 = 100,000$$

d) $\log_5\left(\frac{1}{125}\right) = -3$

e)
$$7^1 = 7$$

f) $\log_9 1 = 0$

2) Solve the logarithmic equation. (Begin by rewriting the equation in exponential form.

a)
$$\log_x\left(\frac{25}{49}\right) = -2$$

b)
$$\log_{32} x = \frac{4}{5}$$

c) $\log_{81} \sqrt{3} = x$

A *logarithmic function* is a function of the form $f(x) = \log_a x$, where a > 0 and $a \neq 1$.

3) Find the inverse function of $f(x) = 3^x$.

4) Find the inverse function of $f(x) = \log_a x$.

So, exponential and logarithmic functions are inverses of each other.

For a > 1:

The graph of a logarithmic function $f(x) = \log_a x$ is increasing over its entire domain $(0,\infty)$.

The range of the function is $(-\infty,\infty)$.

It has a vertical asymptote on the *y*-axis (x=0).

It passes through the points $\left(\frac{1}{a}, -1\right)$, (1,0), and (a,1).

Compare this graph and the process used to make it to the graph of the exponential function $f(x) = 3^x$

For 0 < a < 1, the graph of $f(x) = \log_a x$ is similar to that where a > 1, except the function is decreasing over its entire domain.

5) Graph $f(x) = \log_{1/4} x$.

To graph a function of the form $f(x) = \log_a (x - h) + k$, begin with the graph of the basic function $f(x) = \log_a x$, and apply a horizontal shift of h units and a vertical shift of k units.

6) Graph $f(x) = \log_2(x-5) + 3$.

7) Graph $f(x) = \log_{1/3}(x+1) - 2$.

Properties of Logarithms:

 $\log_a 1 = 0$

 $\log_a a = 1$

Product Property: $\log_a (x \cdot y) = \log_a x + \log_a y$

Quotient Property:
$$\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$$

Power Property: $\log_a x^r = r \cdot \log_a x$

 $a^{\log_a x} = x$

 $\log_a a^x = x$

8) Expand.

a)
$$\log_a(x^3y^2\sqrt{z})$$
 b) $\log_a\left(\frac{xy^3}{z^4w^5}\right)$

c)
$$\log_a \sqrt[m]{\frac{r^3}{s^4t^7}}$$

9) Condense.

a) $\log_a x - \log_a y + \log_a z$

b) $3\log_a x + 4\log_a y - 5\log_a z - \frac{1}{2}\log_a z$

c) $2 - \log_a x + 9 \log_a y$

10) Given that $\log_{10}7\approx 0.845$, find the following.

a)
$$\log_{10} 343$$
 b) $\log_{10} \left(\frac{100}{7}\right)$